A Complex System approach to Study Cities and Human Mobility

Marta C. Gonzalez
Associate Professor of City and Regional Planning

those who see similarities, patterns and universals...

those who see differences, variation and specifics.

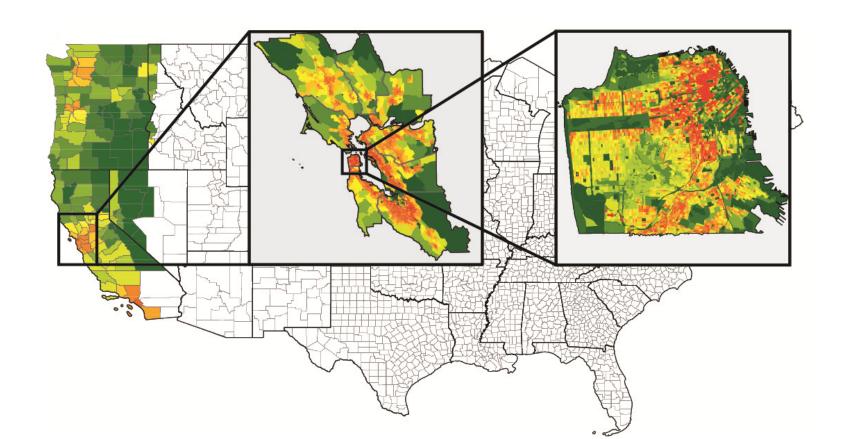
P. Ball, Complexity: Decoding deep similarities.
Nature, 545, 154–155 (11 May 2017)

TimeGeo: a spatiotemporal framework for modeling urban mobility without surveys (Shan Jiang, Yingxiang Yang, Daniele Veneziano, Shounak Athavale, Marta C. Gonzalez),
Proceedings of the National Academy of Sciences (2016): 201524261.



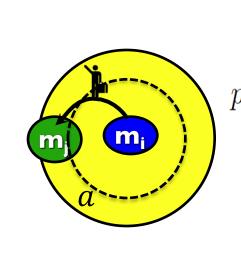
BOSTON

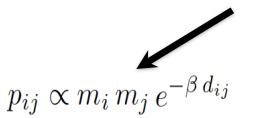
Universality 1: Ranking of Opportunities



Gravity Laws and Opportunity Laws

$$p_{ij} = \mathbb{P}(i) \, \mathbb{P}(1|i,j)$$





$$\frac{\left[\left(m_{i}+m_{j}+s_{ij}\right)^{\alpha}-\left(m_{i}+s_{ij}\right)^{\alpha}\right]\left(m_{i}^{\alpha}+1\right)}{\left[\left(m_{i}+s_{ij}\right)^{\alpha}+1\right]\left[\left(m_{i}+m_{j}+s_{ij}\right)^{\alpha}+1\right]}$$

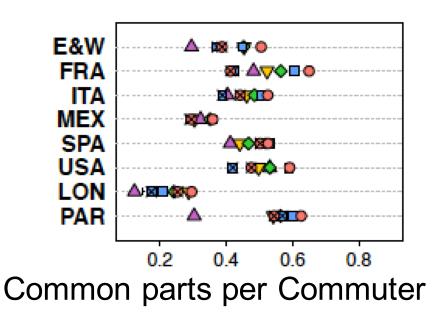
$$P(1|i,j) = \frac{P_{>}(a) - P_{>}(a+m_j)}{P_{>}(m_i)}$$

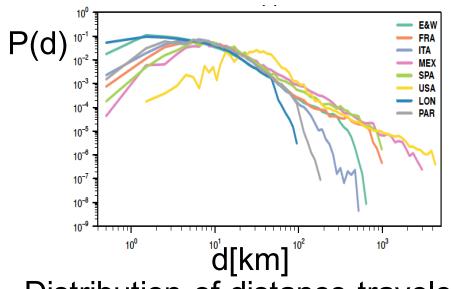
$$a = s_{ij} + m_i$$

 S_{ij} opportunities between i and j

Simini, F., M. C. González, A. Maritan, and A-L Barabási. "A universal model for mobility and migration patterns." *NATURE* 484 (2012): 5.

Systematic comparison of trip distribution laws and models



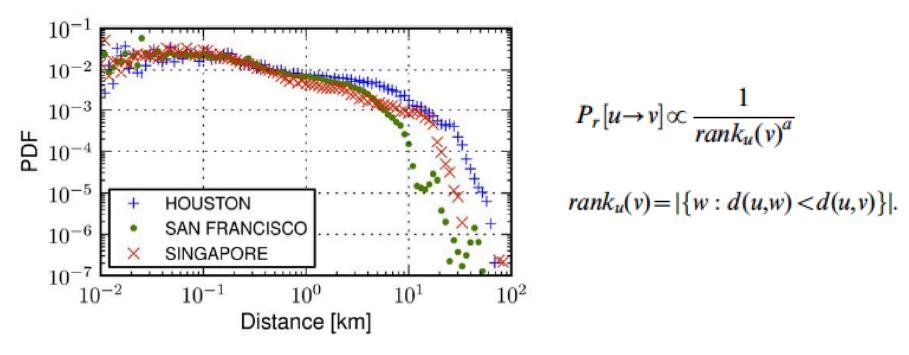


Distribution of distance traveled

Random CPC = 0.01

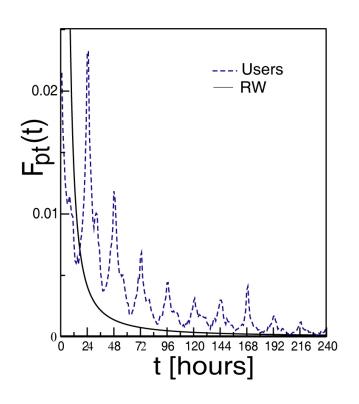
Lenormand, Maxime, Aleix Bassolas, and José J. Ramasco. *Journal of Transport Geography* 51 (2016): 158-169.

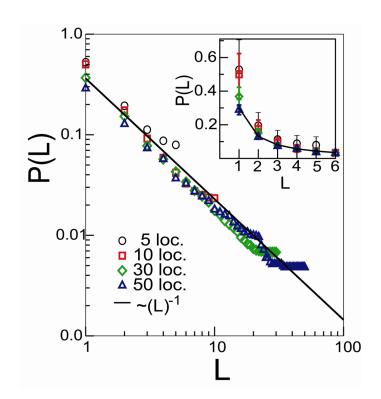
Universality 2: Ranking of destinations



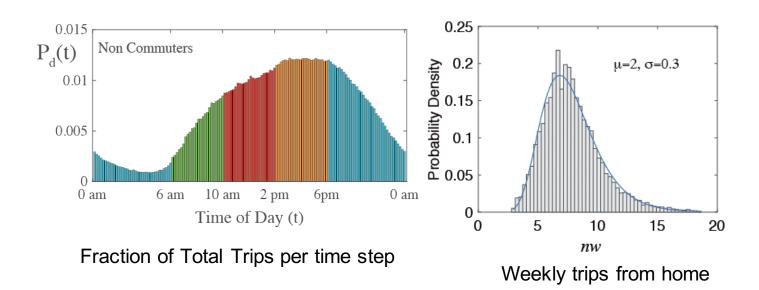
Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., & Mascolo, C. (2012). A tale of many cities: universal patterns in human urban mobility. *PloS one*, 7(5), e37027.

Universality 3: Preferential returns



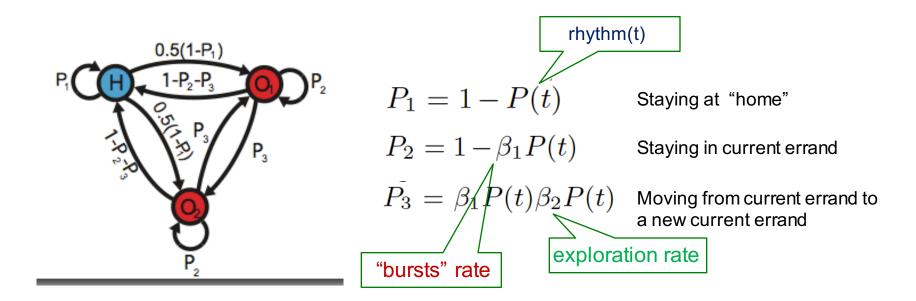


Circadian Rhythm + heterogeneity 1:



$$P_i(t) = n_w^i P_d(t)$$

Markov Mobility Model

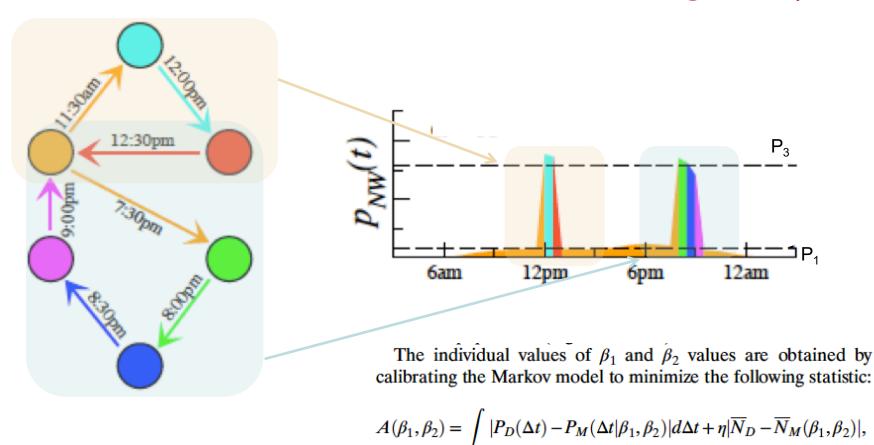


Generates shorter stays in the errand states.

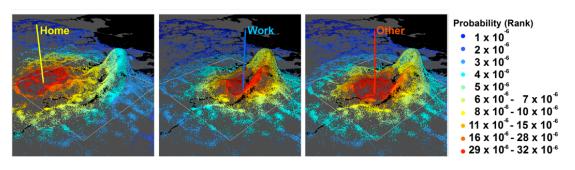
Generates different number of activities in a row per active cycle

$$\frac{P(O_1 \to O_2)}{P(O_1 \to H)} = \frac{\beta_2 n_w P(t)}{1 - \beta_2 n_w P(t)}.$$

We fit the model to the observed heterogeneity

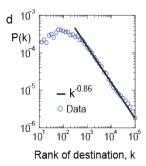


Explorations are selected via the opportunities law



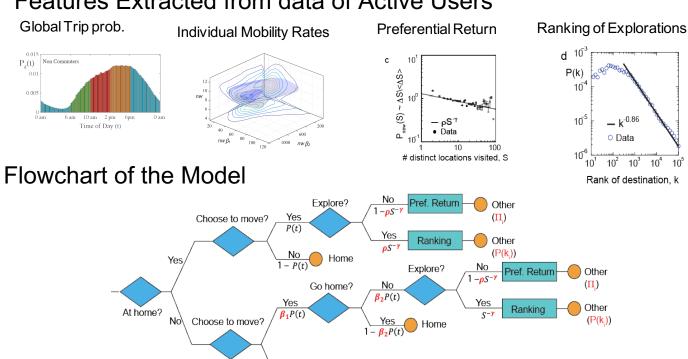
Colors represent the P(rank), height is POIs (point of interests) numbers.

POIs = Point of Interests

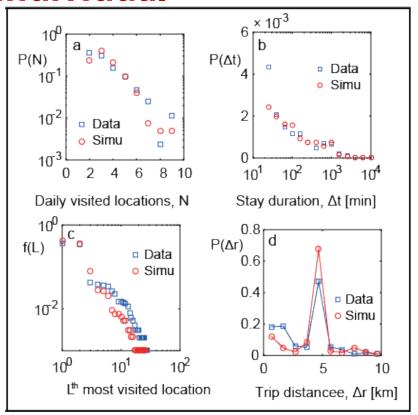


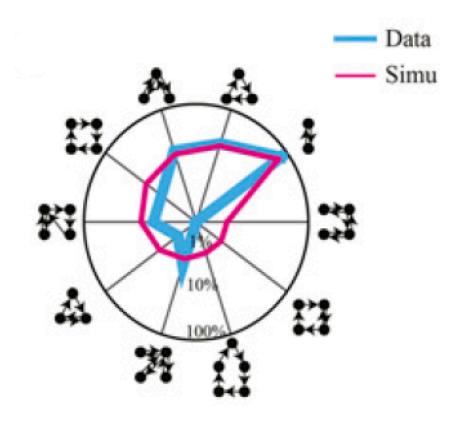
The TimeGeo Modeling framework

Features Extracted from data of Active Users

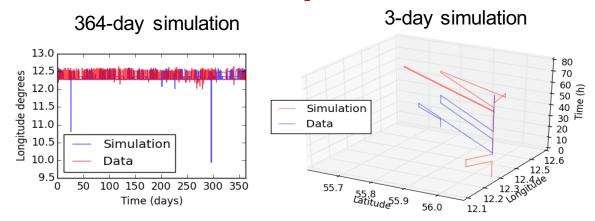


It generates good synthetic versions of each individual



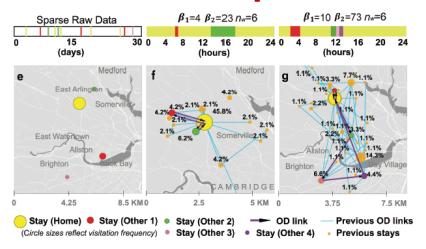


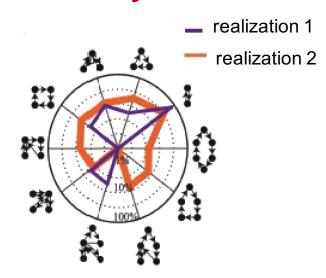
Model does not predict next location

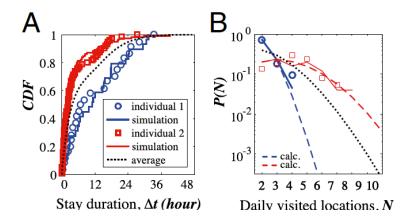


Period	Predicted locations
Day 1	58%
Day 2	70.8%
Day 3	79.8%
Overall (363 days)	46.9%

TimeGeo: From sparse user to synthetic trajectories







Adjusting parameters we generate various types of daily Profiles, keeping their home, work and frequent returns.

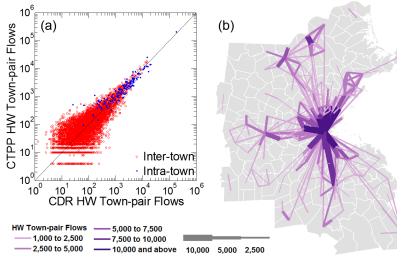
Using Sparse Digital Traces to Fill in Individual Level Mobility Timelines

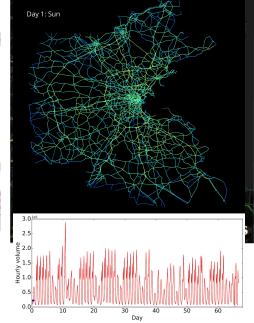
Nabeel Abdur Rehman, Kunal Relia, Rumi Chunara

(Submitted on 6 Oct 2017)

UrbComp 2017: UrbComp 2017: The 6th International Workshop on Urban Computing (in conjunction with KDD'17)

Validated Travel Demand





Contents lists available at ScienceDirect

Transportation Research Part C

Origin-destination trips by purpose and time of day inferred from mobile phone data

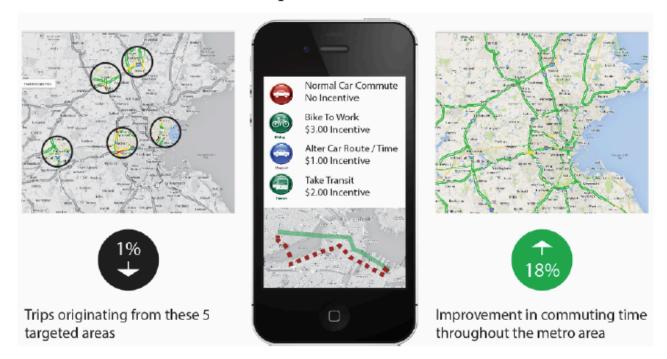
Lauren Alexander ^{a.,e}, Shan Jiang ^b, Mikel Murga ^a, Marta C. González ^a

- Popartment of Croll and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Md, United States

- Popartment of Unban Studes and Hanning, Massachusetts Institute of Technology, Cambridge, Md, United States

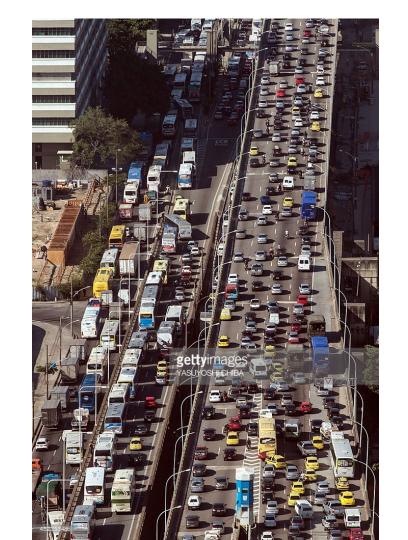
Smart Commute

A program that incentivizes drivers to avoid bottlenecks by choosing a different route or mode of transportation for their commute.



Rio Olympic Games

- Rio population: 6.4 millions
- International Olympic
 Committee (IOC) predicts
 480,000 tourists in Rio for 2016
 Olympics, that's about 7.5% of
 Rio population.
- How to evaluate the impact of Olympics to the travel of local population?
- How to manage the demand?



Data from Companies

- Mobile Phone Data
- Waze (extend the seed OD to weekdays)

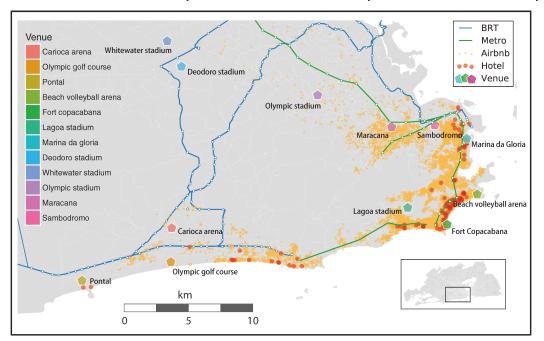
On-line

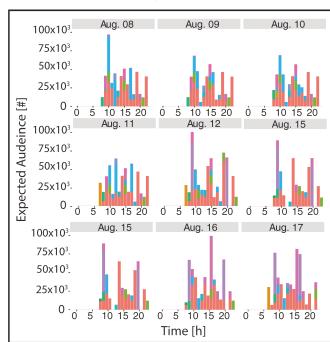
Airbnb Supply

GIS (OSM road network of Rio)

- Hotel, Venues and Schedules
- Camera Data

Venues, Airbnb, hotels, BRT & Metro

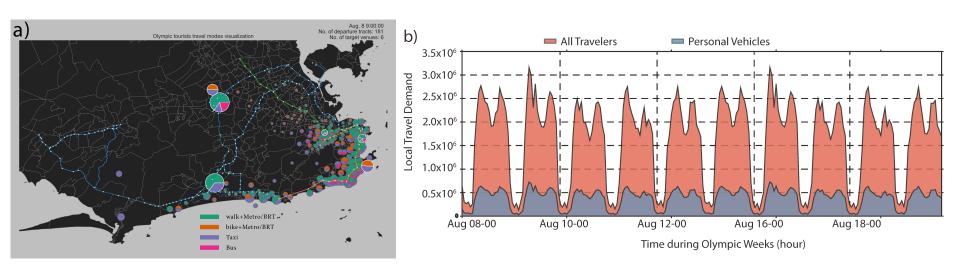




- (a) Data Integrated
- (b) Number of audiences arrive venues and when? (used data: Olympics schedule, capacity of venues)

Traffic Model

Travel demand prediction during Olympics



- (a) Tourist travel mode split
- (b) Total travel demand during Olympics: 2.8 million person
- / 0.7 million vehicles in peak hour.

Smart-app (routing)

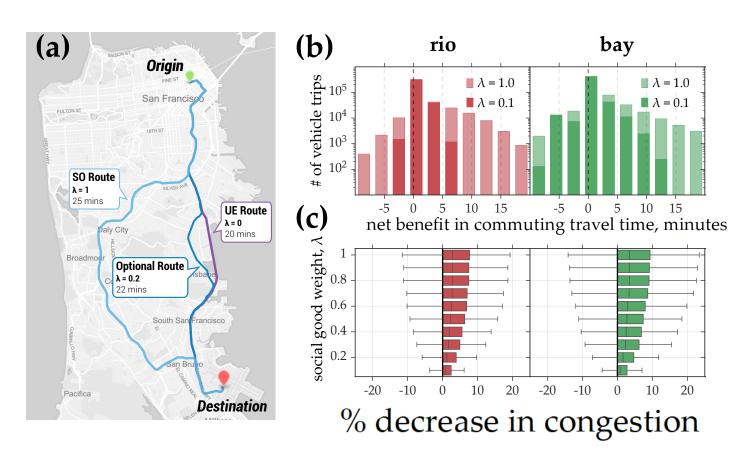
Modifications on the level of altruism:

$$c_e^{\lambda}(x_e) = (1 - \lambda)t_e(x_e) + \lambda \frac{d\left[x_e t_e(x_e)\right]}{dx_e}$$

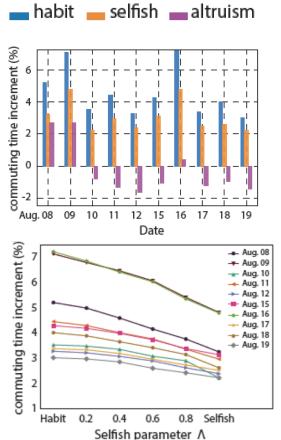
$$\lambda = [0..1]$$
 User Equilibrium component Social Optimun

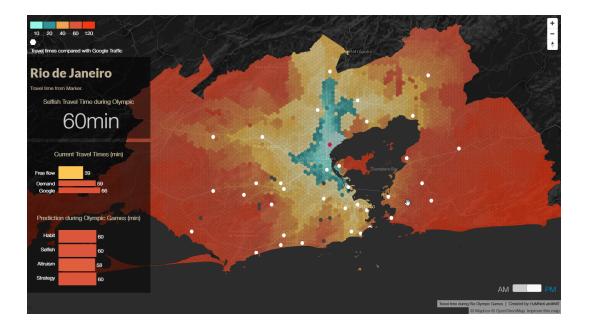
component

Smart-app (routing)

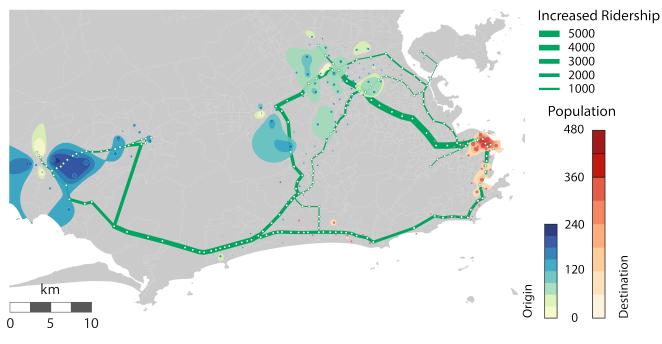


Travel time estimates before and during the Olympic Games

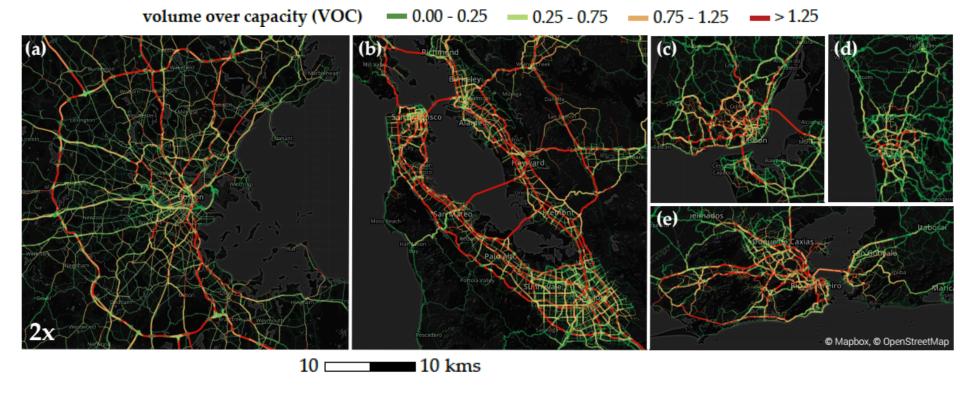




Recommendations of Car reduction per Origin and Destination



Vehicle demand decrease: ~1.3%
Total travel time decrease: ~10.5%



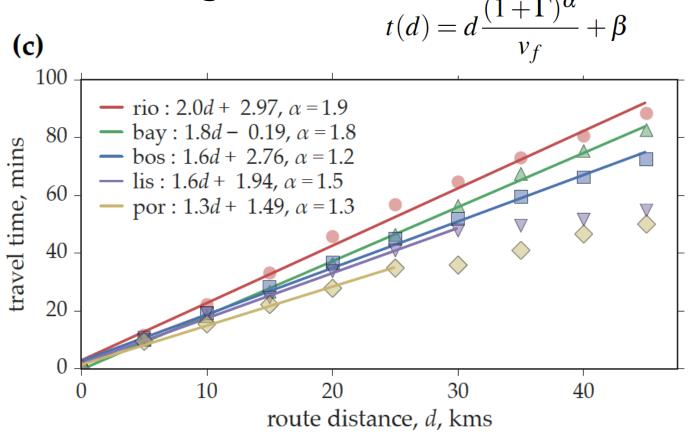
(a) Boston(b) San Francisco Bay Area

- (c) Lisbon (d) Porto
- (e) Rio de Janeiro

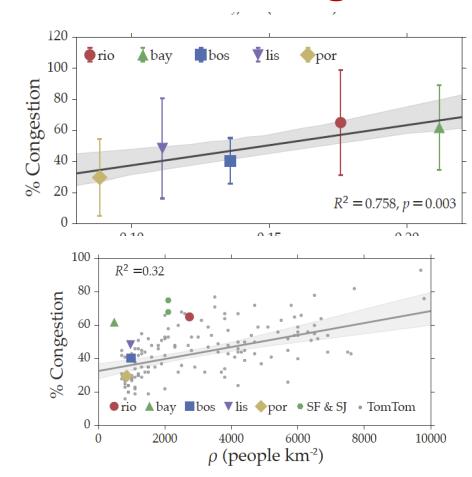
Using 3 months of phone data And Census Information on Population and numbers of cars and their usage

Open Street Map data for the Streets when not better data is available

Commuting Time



Understanding Observations



Demand to Supply Ratio

$$\Gamma = \frac{\sum_{e \in E} \ell_e x_e}{\sum_{x_e > 0, e \in E} \ell_e C_e}$$

 $x_e =$ flow on the road link e (veh/h)

 $\ell_e = \text{road link length e (km)}$

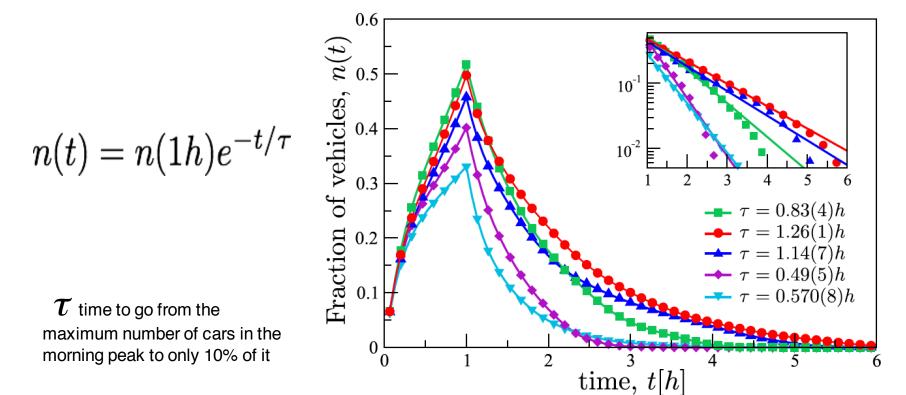
 C_e = capacity of the road link e (veh/h)

		City		
Boston	Porto	Lisbon	Rio	SF Bay
0.129	0.101	0.121	0.180	0.213
0.184	0.188	0.267	0.218	0.234

 Γ $t_{ff}[h]$

S.Colak et al. Nat. Comm. 10793, 2016

Analysis



Informing Planning Decisions

Median free-flow travel time

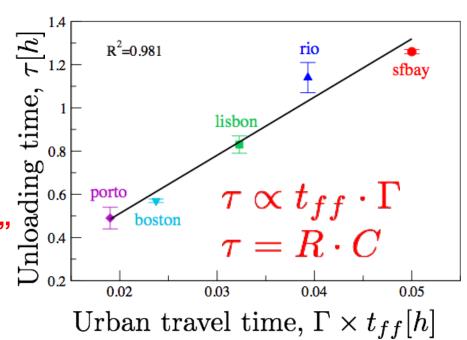
$$t_{ff}[h]$$

"Resistance"

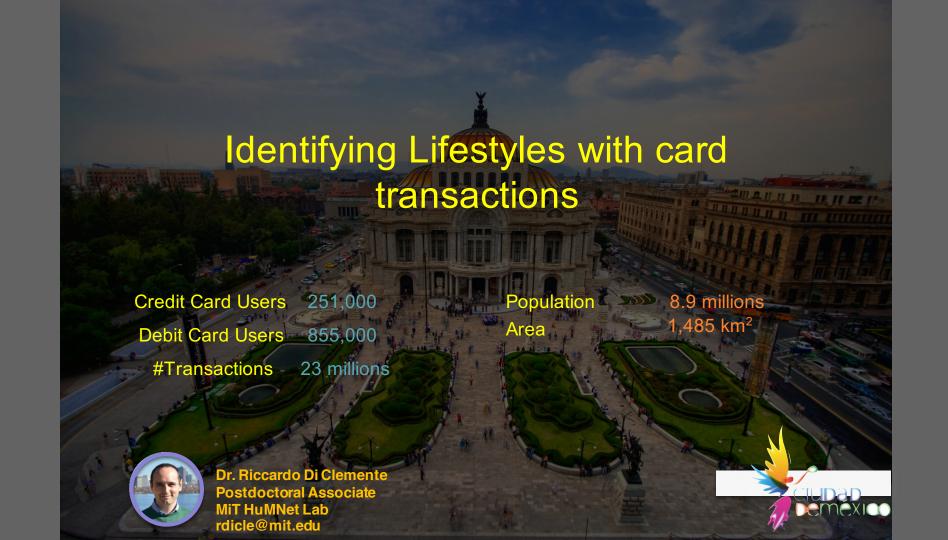
Demand to Supply Ratio

$$\Gamma = \frac{\sum\limits_{e \in E} \ell_e x_e}{\sum\limits_{x_e > 0, e \in E} \ell_e C_e}$$

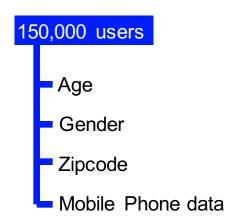
"Capacitance"



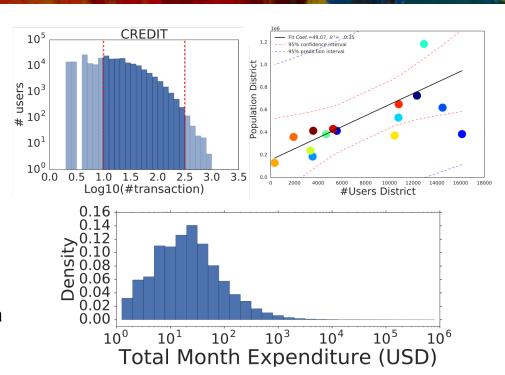
L. Olmons, S.Colak, M.C Gonzalez, Nat. Comm. (under review)

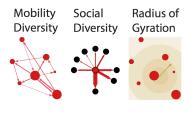


Coupling Credit Card Data with Mobile phone Data

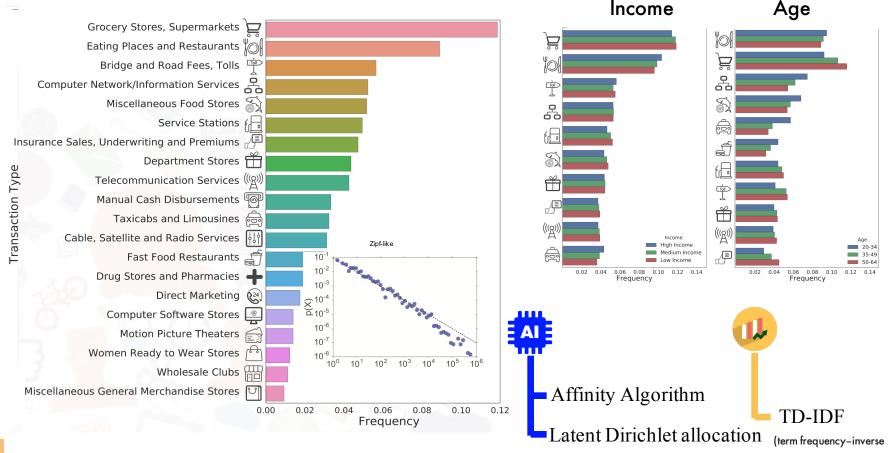


10 weeks period





Distribution of Transactions



Income

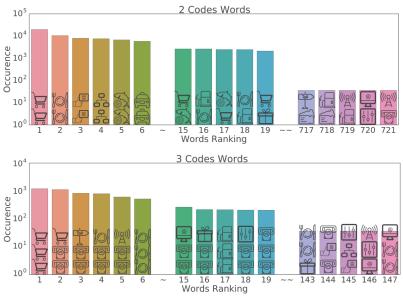
document frequency)

Text analysis via the Sequitur algorithm

Sequitur is a recursive algorithm developed by Craig Nevill-Manning and Ian H. Witten in 1997 that infers a hierarchical structure from a sequence of discrete symbols.

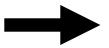
Compressed Sequence

Words as Ordered Sequence of transactions



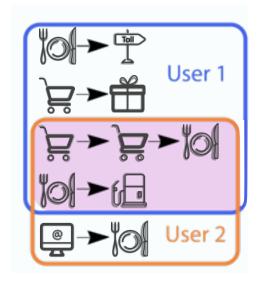
1. Algorithm from text analysis to infer the most common sequence of transaction

2. Null model to select the most significative transaction

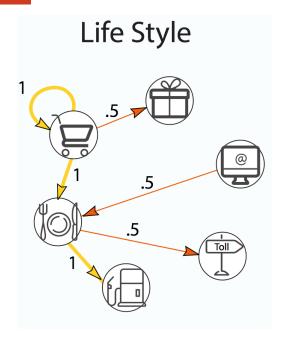


3. Network Theory to cluster the users

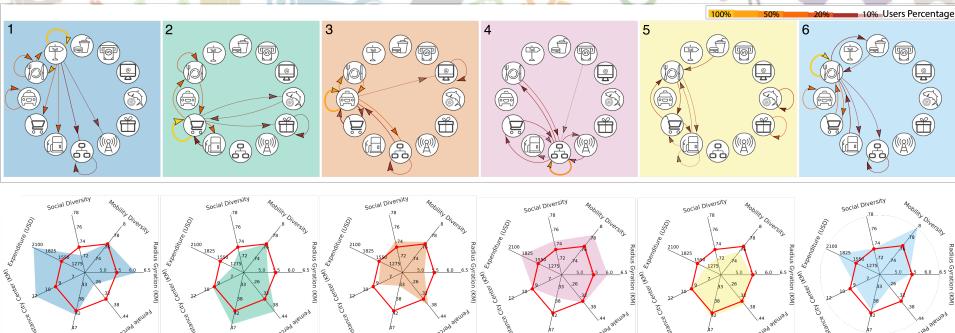
We cluster users

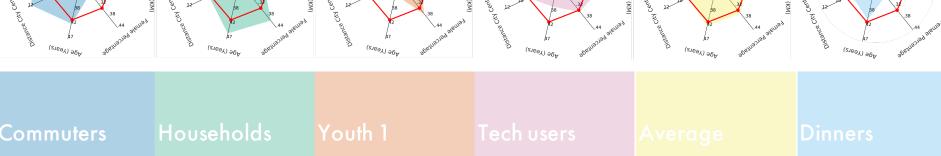




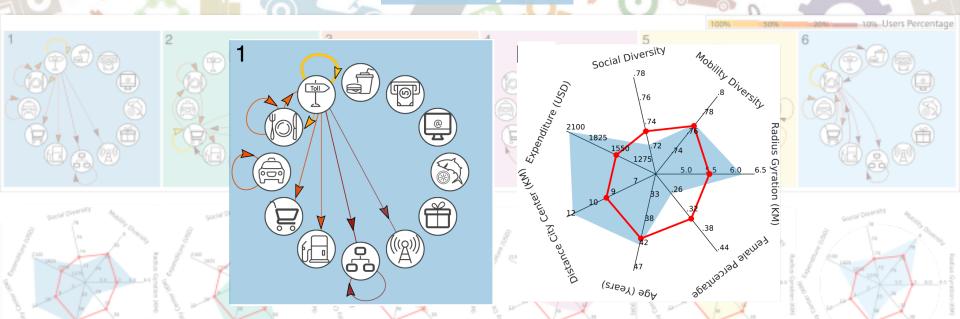


Lifestyles





Lifestyle



Commuters:

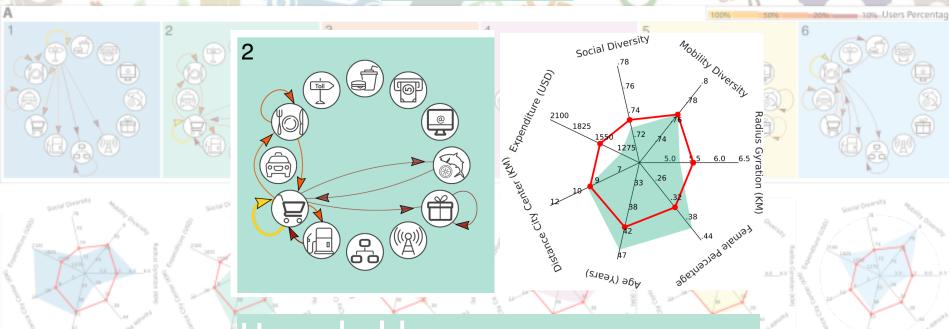
High expenditure, Living far from the city center, High radius of gyration, Low social diversity.

Commuting

House

Dinner-Out

Lifestyle



Households:

Low Expenditure, Older Age, Low Social Mobility, High Female Component

Commuting

Households

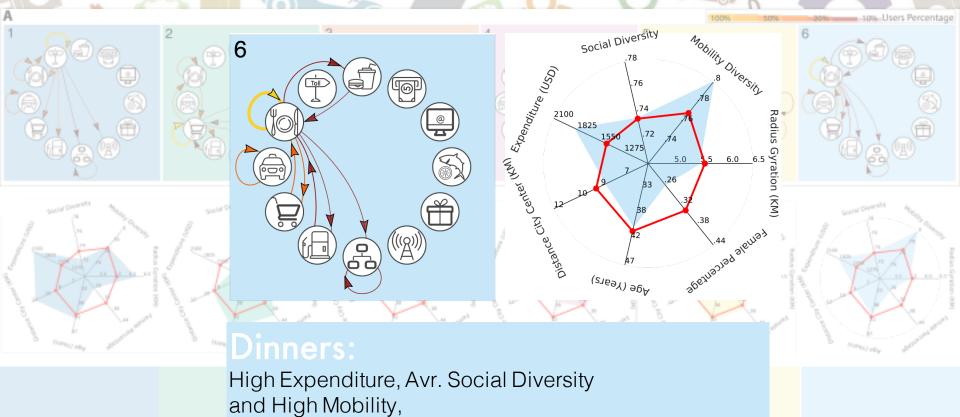
Younger 1

Younger 2

Average

Dinner-Out

Lifestyle

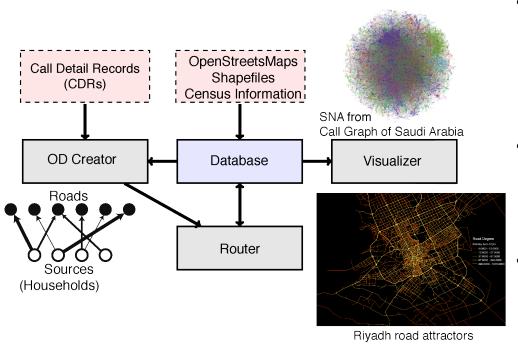


Commuting

ouse

Dinner-Out

Towards Computational Urban Science



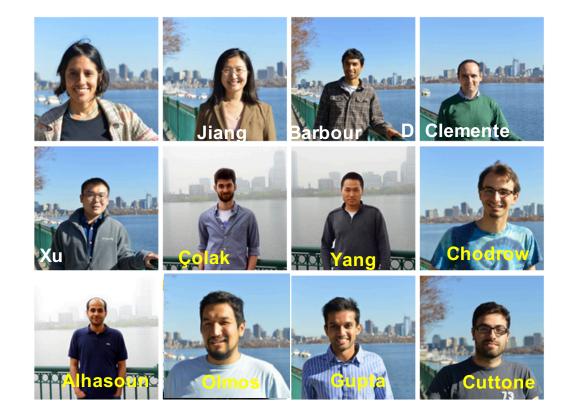
- Today we can measure behavior from digital traces and could use ICT to better plan cities with them.
- Finding universal patterns is the first step, looking for mechanisms and heterogeneities come next.
- Complex system approaches give us an unique opportunity to find the way for that.

Thank you!

Massachusetts Institute of Technology

http://humnetlab.mit.edu

Questions?



Alumni: Toole, Herrera-Yague, Alexander, Lima, Sturt, Desu, Grestle

Postdoc: Schneider, Wang, Belik, Halu

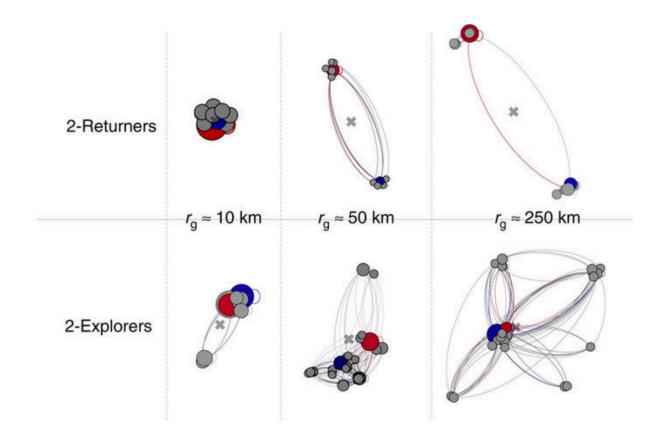
Summary

A city's congestion fingerprint is related to measurable characteristics, namely a ratio of total demand to total supply (Γ) .

Lower λ will moderate the magnitude of benefits and losses while realizing most of possible benefits, making resulting policies fairer and easier to implement

Çolak, S., Lima, A. & Gonzalez, M. C., *Understanding congested travel in urban areas*, accepted and to appear in *Nature Communications* (2016)

Heterogeneity 1: Returners vs. Explorers



Markov Mobility Model

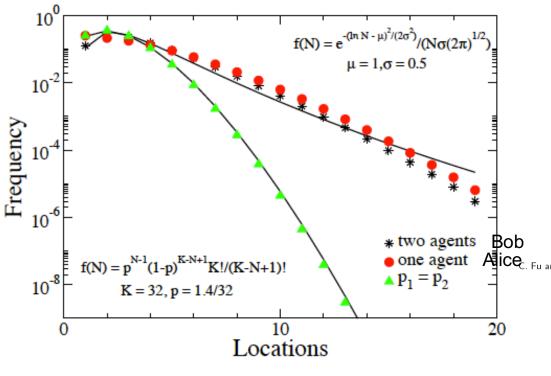


Generates shorter stays in the errand states.

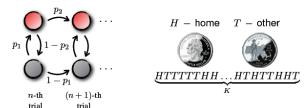
Generates different number of activities in a row per active cycle

$$\frac{P(O_1 \to O_2)}{P(O_1 \to H)} = \frac{\beta_2 n_w P(t)}{1 - \beta_2 n_w P(t)}.$$

The rates explain the number of visited locations



Calculating number of visits



$$P(N = x) = \xi_0 \left(\prod_{t=1}^K \Lambda_t \right) U^{\mathsf{T}}(C_x), \ C_x \in \Omega$$
 (1)

$$\Omega = \{(x, i); x = 0, ..., K - 1; i = 0, 1\}$$
(2)

Africe. Fu and M. V. Koutras, Distribution Theory of Runs: A Markov Chain Approach J. Amer.

Stat. Assoc. 89 1050 (1994)